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THE LINEARIZED CHARACTERISTICS llETHOD AND ITS APPLICATION TO PRACTICAL -
NONLINEAR SUPERSONIC PROBLETK31

FlyANTONIO FEBRI

SUMMARY

The method of chmacteristics has been linearized by a.wwning
[hilt theJowjleld can be repregmted as a bam”cflow$eld determined
by nonlinear-id mdh.wh and a linearized superposed jlowjield
/hut accountg for wna[l changes of boundat y conditions. The
mdhmi ha~ been app[ied to twodimensional rotational $0 w
Irhere the ham-c$*w iS potential jZOW and to am”aily symmetric
prob[~m~ where conical $OW8hare been used a~ the ba~<cJ?OWS.
In both caae~ the m~tkod allows th determination of the JOE
fie[d to be timp[ified and the numerical work to be reduced to a
ji w ca[culation8. Zhe calculation of axially symmetm”c j?ow
Pan be m-mpt~fied ij tabulated twlws of some coejim”ents o.f the
rt)nical jlow are obtained. The method hag also been applied to
.~[enderhdies un.thout symmetry and to some three-dim enm”onal
wing pro bleme where two-dimenm-onal &O can be used as
the batic jlow. Both problems were unsolred before in the
(zpptnxirnation of nardinearbed j?ow.

INTRODUCTION’

ThP use of the method of characteristics for the solution of
supersonic-flow probIems requires numerictd procedures
wflich are lengthy nnd involwd and -which must be repeated
for each set of boun,lary eomlitions. The method has received
general pract icaI applica t ion only for twodimensionrd or
axially symmetrical probIems in steady ffovi and onc-
(Iimensional or quasi-onedimensional nonsteady flow, and
ordy very fem cases of general three-dimensional ffovr have
yet been investigated.

Jluny proMems have been in-restigated at. present by
means of the hneatied theory in which the disturbance
wlacitv components (defined as the difference bet}veen the
hwal a;d the fre~stream components of the veIocity) are
considered and are smau, so hat. terms of ae~nd order or
higher can be negIectecL In the present report a simplifica-
tion is introduced in the equationa of motion based on the
assumption that one of the veIocity components or the
variation of the veIocity components as a function of a given
parameter can be considered small, so that terms of second
or higher order in the quantities considered small can be
neglected. Nlen one of the velocity components is assnmed
to be smaII, the other two -reIocity components can be ex-
pressed in two parts, one of vihich is Iarge and is a function
only of two coordinate positions, and the other of which

is smalI, of the same order as-the third veIocity component,
and is a function of alI three coordinates.

If the variatims of veIocity components as functions of a
given parameter are considered smalI, rdI three velocity
components can be expti in two parts. One, Iarge, is
independent of the parameter considered, and the other,
smalI, is a functipn of the parwneter considered. Whtm the
wIocity components are substituted into the diflerentid
equations, the equations can be divided into two parts, and
the differential equations containing the veIocity components
considered smaH become linear; therefore, superposition of
adutiona ,is posaib~e. With this assumption the flow field
can be represented for any condition by the superposition
on a nonlinear basic flovrfield of a Iinetmized flow perturbation.
The flovi field, which represents the variation of the basic
flow due to the changes of the geometrica.I parameter con-
sidered, changes linearly with the parameter. Beeause of
the simplification, the superposed flow field is defined by
differential equations of hyperbolic type which have char-
acteristic surfaces ecpud to the characteristic surfaces of the
basic fIow field and known coefficient; therefore, the super-
posed flow fieId can be obtained dired-j without the iteration
process aIong the characteristic net of the basic flow.

.4 particular application of the linearized characteristics
method htis been discussed m references 1, 2, and 3 in which
bodies of revolution at smudl an@s of attack hare been
considered. In the present rep(lrt the btisic concept of the
linearization is discussed and examples of application to two-
dimenaional rotatiomd flow, to coniwI flow-, to asially sym-
metric fbw, and to some general three-dtilonaI probIems
are discussed. From these examples, other applications of
the same method to supersonic steady- or nonsteady-flw
problems can be visuahzed. For exampIe, the method can
also be appIiecl to the determination of the flow fleId in super-
sonic compressors or turbines imring supersonic relative
-reIocity inside the passage. In this case, the twodimensional
flow of the cascade of the blades at each radial station

or the axiaIIy symmetric flow can be assumed as the basic
flow. In the first case the radial component of the veIocity
must be assumed to be snd, vihereas, m the second case,
the tangential component of the veIocity must be assumed
to be smaII.

JSupersedesN-AC~ TN- 2515,‘The UneMzed Ch-ncterLstIm Metborl and Its .ipplke!tbn ta Practical A%mline=SupemnIc Problems” bf Antonio Fen-l,1951.
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SYMBOLS

a, b, c, d, e coefficients of & wmiable~ in the .char@er~@ic
equations (defined case by case)

speed of sound

coefficient
(

~ (%%+%%))

coefficients defined by equations (20) and (25)
pressure coefficient
Mach number
gas constant or radius of Imdograph diagram
entropy
velocity components aIong the r~, y-, and z-axes

in Cartesian coordinates or along r- and y-axes
and perpendicular to the meridian m~-plane
in cylindrical coordinates

velocity components in polar coordinates
tangential and normal velocity components in

front of the shock
intensity of the velocity vector
Mach angle
ratio of specXc heats
inclination of the characteristic .Jines in the plane

z= Constant or 0= Constant
coordinate of the meridian w~-plane in cylintiical

coordinates or of the r@plane in polar
coordinates ~

polar coordinates
inclination of the velocity vector with respecL to

thti z-axis
components of the rotation along the x:, y-, and

~+~efj
,

Subscripts:
o properties of the basic flow
In,.. properties of tJM superposed linearize~ flow fields

THE EQUATIONS OF THE LINEARIZED CHARACTERISTIC
SYSTEM

Consider, for example, a flow field defined by a velocity
vector T7(u#,w) the components of which can be expreesed in

(1)

For constant stagnation enthalpy in the ffow field, the rela-
tion between entropy and rotation states

cud Vxv=.$ grads (2)

kmrne that K and % are functions only of x and y; then, by
neglecting terms of the order of aaz, equation (2) bcocrnes

M3a?

(g-::) (’”’-%)
— —-vo~an ~ya27E —uo~a. ~j

Therefore, the entropy field can be expressed as

(3)

.

(4)

Assume that each coefficient al . . . a. is constant in the
entire region of the flow field where it is not zero and is small,
so that terms of the order of u.* or higher can be neglcctd.
In this flow abasicflow field exists, rcprescntcd by the velocity
vector Vo(M,@ and by the entropy distribution So, on
which a linearized flow is superposed, represented by a

I summation of N three-dimensional flow fields, cinch of which
is proportional to the corresponding coeflicie.nt as. The
ba~c flaw field is a twodimens~onal fl~w if Cartesian coordi-
nates are used or an axiaLIy symmetric flow if cylindrical
eaordinates are used and can be determined by known
methods. In a similar way, a general three-dimensional
flow field can be assumed for basic flow if the flow ficlcl cap
be obtained by simple analysis,

The equation of motion obtained from continuity, momen-
tum, and energy equations can be expressed in Cartesian
coordinates in the’ form

%1-$)+%(%+%(%)-%($%’)- ‘

%(:-+%)-%(%+%)=0
(5)

while, in cylindrical coordinate.s, the equation becomes
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B-y use of equations (L), expression (5] becomes

(%+w0”0Aa+7’+’o”’l
(7)

wliere

The basic flow is a two-dimensional flow, and the first part
of equation (7) must be zero; therefore, the second part of
the equation must also be equal to zero and, for each due
of n,

(8)

Equation (8) is a ditkential equation of hyperbolic type
because uJ+roz>%* and the characteristic surfaces are
cylindrical surfaces perpendicular to the plane z= Constant
wit h generat rices coincident with the &aract eristic Iiies of
the two-dimensional flow. This can be seen from the fact

of equation (8) are expressed as functions of the properties
of the basic flow and are the same as the coefEcients of the

derivatives $, ~t and ~~~ which define the basic flow,

and the coef.fkient of -~;m is one (see, for example, reference 4,

page 282). Therefore, the disturbance flow field VJun,P=,wJ
can be obtained by the method of characteristics by moving
along the characteristics surfaces which are cylindrical. The
characteristic net, which for the general case must be drawn
in spatial coordinates, can be drawn in this case onIy once
for any value of a and n and is equal to the net of the two.
dimensional flow. Equation (8) can be transformed for

practical use. In the equation, the terms in wro, ~> *Z

aOo. at70
—~ and — are know-n terms and are given from the two-a.t au
dimensional flow field.

Assume, in me plane xy, polar components for 1“and ~ for
the velocity, defined by

(9)

and, because higher-order terms are neglected,

II n is the normal tq the projection of

plane z= Constant, the derivative ~ is expressed by

W)

(11)

the streamline in the

By use of equations (4) and (1), equation (12) becomes

(12)

(13)

By consider~~ onIy the lovw&order terms, equation (13)
becomw “

(14)

because the right-hand term contains as a factor the variation
of entropy along the streamline of the basic %OW;therefore,

where no is the norrmd to the streamhne of the basic flow in the
phme W.

After several transformations the foIIowing equations can
be obta”med (see reference 2): In the plane z= Constant aIong
the characteristic line de&ned by

(16)
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the following equation is valid:

sins 130 ._!_ @+p.B,+$ C,=o (17)
~os (PO+/30)-tB dno

ad along the characteristic line of the second family defined
l.)y

dy
Z=h=tan (qo–flJ (18)

the foIIowing equation is valid:

dwm 1 sin t?. tan Po+d Va 1——.. —
dz v. COS(~~–/!?O)

_ —+tan P. ~–
dz ~70

sing PO 1 ds. v.
(19)———P.B2+E CZ=O

iOS (Qo—&) TR dm

where Bl, Ba, C!, and Cd are coefficient functions of x, y, T70,

d‘0 long the characteristic lines of the
‘oJ%’a”d(%)(=):
first and second families at eaeh point and are independent of
V., pm,and w,, and, therefore, can be determined once for the
basic flow and used for any kind of disturbance flow in the
limits of the approximation accepted. The coefficients B,,
Bs, Cl, and C2 are given by Lhe following expressions:

B,= 1’

“[

ain4 130d so I d VO COS(QO–&)
()cos & cos (Pn+ I%) TR m-m ~ ‘S sin/90 1

(~oa)

1B,=—------ - — [
SiI)4~odSO 1 dT~o COS(Po+fl~

()
_— —_. _

cm Bocos (qo—,po) TR dno VO dz 1 m 60 1
— .—

(20b)

(1+ z+
2 sm 80)

(20C)

[

2 dSo sins f?.

+LP) cOs(’O+fiO)+JZR dno cos (PO– I%) J70 dz Icos (PO— Po) cos B

(~+ 7—1
2 sin2 flo)

(20d)

d V.()where —
dx ,

is the derivative along Lhecharacteristic of the
/.

d V,
()

firstfamily and ~ ~, along the characteristic of the second

fanliIy.
In order to determine the vahe of w. at each point of the.

characteristic net, Lhe following relations can be used in the

plane z= Constant:

~=g~

and, if 80 is a streamline projection in the ph no .z=Const finl,

In the approximation accepted,

therefore,

(24)

where $0is the sLreamhne of the basic fiow.
Equation (24) permits Lhe dcLwmination of t]le vall~e of

w at each poinL of Lhc plane z= ConstanL as a function of
W local variation of ~“=in the zdirection. Thcrefom, hy
means of a step-by-step procedure, all the flow field ran he
determined by working in phmes z= Constant where only
one charactwistic net must bc used, by means of equntions

(17) and (19), and by determining tho value of ~ at ench

poinL of tlw net by means of equation (24). Thu calcuh~-
tions arc started from Lhc flow field Mind, or along a sur-
face which is not a characteristic surface, or along a charnr-
terist ic surface and a stream surfam. The flow field aL 1ho
starting surface must he det.crmincd from the Loundury
conditions. If the starting surface is a shock wave, il~c
flow aL the shock surface must lx! obtaind from thr physical
propmt.ics of the shock wave rclated to the boundiq con-
ditions considered. Relations Wween boundary conditions
and shock waves are presented in cictuil subscquontly for the
problems considered.

Similar cquat.ion9 can be obttiined by using cylindrical
coordinates in pla.c.cof CarLmian coordinat~~.

Equations (17) and (19) remain the same. OnIy the fiML

term changes: ~ becomes
bw

—P and Lhe codhicnts Rl ad
yae

B, bccomc

B;’= 1 sin so sin (We—b B,
Cos /30Cos (%+ /30) Y

“(” (~~)
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Equation (24) for cylinclriml coordinates becomes (see
reference 2, equation (80))

au?.”
( )

ill”. a; M3= w= sin @o
Z ~.c&eti=~+~O ~e’ v

(26)

The use of the linearized c~laracteristic system is simpler
in many cas~. than the complete characteristic system and
reduces in some practical applications the ~~tent of the
numerical work required, especially if solutions of many
similar problems are required. ‘The same concept can also
be easily applied in the field of nonsteady or relative motion
of flows.

The flow field around sIender bodies without axia[ sym-
metry can be obtained by means of linearized methods, and
some practical thre~dimensionnl problems not analyzed
before in Lhe approximation of nonlinearized flow can be
analyzed by thii method.

In the next sections some typicaI po~lble applications are
presented.

SO!JIE TYPICAL APPLICATIONS OF THE LINEARIZED
CH.\RACTERISTICS METHOD

TWO-DIMENSIONAL ROTATIONAL FLOW FIELDS

Twodhnensional potential flow permits hmiogmph solu-
t ions, and, therefore, any kind of tvm-dimensional super-
sonic potential-flov- solution can be obtained in the hodogrqph
plane; the numerical solution in the physical plane then
requires only the construction of a characteristic net in
order to find the position in the physical pIane of each
point of the hodograph plane. The solutions of problems
in which bou~dary conditions are given only along a stream-
line are very simple in the approximation of potenthd flow
because in this case the velocity is constant along a family
of c.harac.terist ic lines (single-wave flow); howerer, similar
calculations for rotational flow are much hors involved,
because a step-by+tep procedure is required for the solution
on the hodograph plane as WA as for the construction of
the characteristic net. By means of the linearized charac-
teristics method a rotational flow field can be considered as a
modification of a potential flow field, and the linearized
superposed flow is the flow which takes into account the
effect of the presence of shock waves and the effect ‘of rotat ion
in the flow.

(!onsider, for cxamp~e, a twodimensionaI profile which
produces a shock wave at the leachng edge (tig. l). If the
profile is curved, the shock is. curved, and the flow behind
the e.hock is rotational. Assume that the flow field behind the
shock can be expressed as

U=WY+?J1

T“= T“;+ v,

8=s,

where UOand P. are the velocity
potential. flow field, -which in this

)?)= VO+D1 $

components deflncd
case is a singl-wave

(.27)

by a
flow,

:

—---

FNWBEL-AppI1cMon Mthelluear!zed chmcterktlcsystmn to two-dlmenskml rotathml
flow.

dVo

()TI
along the characteristic lines of the first- family is

zero, and Ul, q, and ~1 represent the flow field that takes int~__
account the reflections occurring at. the shock and the effects
of the entropy gradient. The flow fill represented by VO
and F. can he immediately deterrninedt and Vti and POare
constant tdong th; characteristic. Iinea of the fifst fanliIy,
which are straight Iines. The cluwact eristic net of the flow
T70,P0can be drawn in a short time. Then, along the &rao-
terktic of the first family,

and, along the Aaractmistic of the second family,

.-
‘i~o d~, +& dV,+tan 130.dpI+ - ~R

Equations (28) “and (31) can be simplified by ktroducing
the gradia.nts (Ko)= and (Wo+fIJ= along the z-axis defined .as

(32)

It. can be seen from figure 1 that, at tiny point .4 of ordinate
y.~ on the characteristic Iinc a, crossing the axis at ,AO,-i%i”
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dV,

()‘ariatio~~ z- ,
along the characteristic Iinc of the second

family at A is

[(%)J.,=(v~J%[’-::2:tk]*I/.,kh).].o
—sin~ (90+ /30).4.””-

(33)

bc.cause POand WOarc the same at, A and at AO. Therefore,

()

I dT70 a’——. —- ..— —. .
~ro dx ~ l—by.4

(34)

where a and b are constants along each characteristic Iine
of the first family, Then equation (28) along the charac-
teristic lhe of the first family komes

~+t~ 1%dw+y-dSr

Cos (w— 60) 1 sk+

‘1 sin (wo+l?o) cos PO sin BO 1 — ~!l

;(1+ 7–1 )
a dy cos (PO—PO) 1 _. (35)

2 sin2 BO =ij sin (PO+ PO) COs* PO

Thcrcforc, if
.2

“1

(?5).
a=sini (PO+”190) TO

(36)
~= (PO+PO)Z

Sfi+ (90+s0) .

the equation along the fi~t characteristic line becomes

(1+z~i~a\o) tan I%~~ dlog(l–b~)=o (37)

and theequation along the second charactmistic line becomes

,

V, d VO

(
?’-1 ,. .=O— — knz PO+2 Bins~. coS2do

VoV(J ) (38)

N the coj?fficients of equations (37) and (38) are constant
along characteristic lines of the first I&mily and can be
calculated at few points on the z-axis.

The coefficients of equations (37) and (28) are independent
of WIand Y1; therefore, with one calculation from points A
imd C of the net of figure 1 the values of VI and ~1 at a
point B can be obtained directly without the necessity of
an iteration process, with kWXIMof the order of (AX)*also
includcd in each step. Indeed, if all the quantities which
are variable along the characteristic Lines are expressed in

the form

then
.

an—aA
‘[($3A~+(*)B~];+”@@ (40)

Consider now equations (37) and (38). At point C equation
(37) has the form

while at point B it has the form

then, from equation (40),

But,

[(~)CaC+(~)Ba~]AZ

Indeed,

and

[(%Cac+(~),”B]’x

and also

[(%)c+(%)da+’’=[z(;?)c’”+a’(%)}””

(%)C(:?)CA’IA’+ ”’A’”

Therefore, equation (37) along t~le fiI’sL cba~cteristic line!
terms of the order of (ZB—zc)* being neglectcd, can be written
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in the form

.

and equation (38) along the second characteristic line, terms
of the order of (~B—~Aj3being negb?cted, can be mitten in
the form

(43)

Because of the possibility of considering directly in the
calculations terms of the order of (AZ)a also, hinge steps can
be us~d in the characteristic net and the effect of entropy
gradients ca~ be easily evaluated after the basic oharacter-
istio net and a few streamlhms of the basic flow have been
determined and the coefficients of equations (39) and (4o)
calculated at a few points on the axis.

.111the coefficients are comstant along each characteristic
iine of the first family; therefore, in going from B to D, only
the t ems containing SI and y must be changed and the
c:hdations are simplified to some extent with respect to the
rot at ional-flow charswt eristic calculation...

.MIALLY SYMMETRIC FLOW FIELDS

For a.tially symmetric How, t h~ equation of linearized
characteristics becomes

along the Line A2= tan(pO—/3J -where &’, B2’, (’1, and ~z are
defined by equations (25) and (20).

The introduction of equations (44) and (45) simplifies
noticeably the num@al calculations without affecting sensi-
bly the precision of the results. The practical use can be as
follows: A basic body shape is determined first by means of
characteristic calculations, and the characteristic net is then
obtained. The basic calculations must be extended in a
region in front of the shock wave, determined with the usual

procedure (for examp~e, reference 3), and in a region inside
the body as shown in figure 2 in order to determine all the
fio~ field necessary. Thus, a reduced number of points of
the characteristic net is chosen at which the superposed flow
field for each boundary condition dillerent from the basic
sh~pe wUI be determined. The number of points required ‘“ “”
depends on the magnitude of the superposed flow field; how-
ever, the 1number is usually small, because for each step
between two points A and B the disturbance velocity can be
expressed in the form

-.-—

( ~’l)l?=( 1’I)A+
(%).’’+(%)..% ‘a)

(# T-, Ad()where the term ~ ~ ~ is also included because, in the

dHerentia.1 equations” (44) and (45), the coefficients of the
cliflerential equations are independent of the solution and
are known at both points. If the entropy term & is neg-
lected, by applyiug finite-difference methods the -relocity” “-””
components at a given point g5 of the characteristic net can
be expressed from the values at two points f5 rmd g4 in the
form —

where (PJz~, (wJfi, (T‘Jcl, and (T”ljnare functions of the
boundary conditions considered, -iihiIe the coeflloients ~,
m, n, y, g, and r are functions only of the basic flow field
and, therefore, must be determined only once for any
boundary condition considered. These coefficients are

(50)

. .

q=(%6– ~J-s)K~yo)@@2’)@+(~“”okm’hiil:

dS,
If the entropy terms in ~ are considereti, two more terms
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in (SJC5 and (&)It must lJc considered in equations (47) and
(481 and two more terms in (~,)lh and (.$1)s4,in equation
(4!3). However, because thsse terms are small, they can
usually be ncghwtwi in practical calculations.

Because aIl the coefficients me determined ,ordy once, the
d(’termintition of (VJ~Aor (W)Z5for each boundary condition
is simple. Points at the boundary can bc investigated f~y
metins of equations (47), (48), and (49). Points on the shock
rtin Iw analyzed in a similar manner. A pmctic.al caJculation
m n be performed in the following way: The basic flow field
and tbe numbrr of points in which the superposed flow field
will be. considered having been cletmmim’d, the new boundry
cond iLions (shape of the body) are placed in the character-
istic net (fig. 3). If A is the point where the basic body
tlcptirts from conical shape and OBC is the new boundary
condition, the flow field between the surface of Lhc conical
body OB and the conical shock OE arc known from cone
calculations; therefore, the values of T’ and P at each point
13a, la, 2a, 3a, and 13a of the basic characteristic net are
dekmninecl, and by ditTvrrnce the values of l’, and w can lm
obtained. From al the flow at the point L of the boundary
can bc rletcrmined from equation (48) where WIis known at
T,, aml Lhc coefllcients at L can be determined by linear
interpolation betwrrn b 1 and c1. From the values of TT1and
PI at al and IJ1, the corresponding values at b 1 arc inter-
polated. Then all the values for the line b can be obtained,
For the determination of 1:, and w at a point F on the shock
wave, the equations of the shock wave and equatiou (47)

4

3

I . . .-. >.,

.
FIWRE .Z-The basicctmracterhtfonet for dd]y symmct.rlcfiow.

arc valid. At the poinL F the wdmw of w and I “uarc knowu,
al’

and from the equaLions of the shock wave the vahw of -—-
Z)p

as function of q can be dehmnined. (The value of
the dcviat.ion across Lhe shock wave.) Therefore,

(1(V)p’=( V,)F+( VJI’=( I’(J)F’+ ;+ (W1)F

Iwtween t-he points 4b aml f?Thin, equation (47) applid

●

—-(a ;;-=(V,)N &n–(PI).y]: — (5q}

and the value of (wJr can hc determined.
Tho work required in Lhc mlculat ion of the flow field for thc

basic body and t.hc determination of the coticicnts L, m, IL,
p,q,and r can be reduced to n minimum if conical bodies me
assumed M Imsic bodies for the calculations, bccausc in this
case the basic ffow is available in t.abulatcd values (rcfl’rmcc
5) and the coefficients L, m, n.,p, q, and r arc functions only
of the polar coordinate #.

For conical flow, the calculations can be perform~vl i~}tlw
following way: From conical-flow calculations, the values of
u, and t~mas functions of $ are known, whrro o, is the raditi]
component and u., the normal component of the flow fhdd
in polar coordinates referred to the limiting velocity (fig, -t).
The following expressions for T-O,80, and w can be detmlin(~i
from the cone calculations:

v*=v=~+D,2 7

(53)

J
Tlwrefore,, ~, + ~ and ~O–& me known as fuurtions of ~.
From a poinL A on the conical body, the characteristic line.

Y

,C

o x
FImrRE !.—The buglenet when umfed flow k armtnredw tk bwlc flow fOr the Hrrear&ml

clrmncteristimmetliod.
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of tlie first famiIy AC and of the second famiIy .4D c-an he
, drawn. The lime is defined by the expressions

y&—y4_tan(B+p)~+tan(~+p)z
2’

.
x~— r.{

yF—y.4_tan(#—p)4+tan(6—p)F

X* — .rp 2“

In order to construct a characteristic net that requirea only a
small amount of calculation, the points of the net are chosen
aiong straight lines from 0 so that the conical property of
th~ How can be utilized. The net can be constructed by
fixing the steps along the body.

When point B is chosen along AO, the point E a~ong AC
is determined by drawing BE paraIIel to Al?. From E and
F (rdong OE and AD) the lines GE paralleI to LF ancl FG
ptirnllel to EH can be determined, and the point G can be
!)~lhikd. From G and H, point 31 can be obtained, and by
proceeding in a simiIar way, all the characteristic net can be
{letermined. The coefficients of equationa (50) are the same
for each point h’, F, and E along the same radius. The
tahulat cd values are given onIy in the region between the
}J{Jdyand the shock wave; howeyer, the calculations can be
extended by means of conical calculations. For example,
from the foIIowing equations (see, for example, reference 4,
p. 243, and the following pages):

nld

(rm)#,+A t=(~.hc Cos LW+(R– G)$c”ti@
(%)*c+*#=(d#c sinw-a- ~r)#ccog W+u?hc 1(55)

(where R is the radius of curvature of the streamline in the
budograph plane); therefore, the characteristic net, can be
~xtended to the outside flow. For conical flow the coefli-
rients l?,’, Z&’, C’l. and Cl can be determined as functions of
~. For conical flow, coefficient B,’ of equation {25) becomw

B,’=
1

[

sin P. sin (m—60)_
Cos POcm (90+ Bo) ?/

I d 1~11dll
()

cos ($n—po).— —
1“” (f* ffz k, sin PO 1

and L’1becomes

()J$ sin * sin (ski+ 130— *)

x i,= ?/ Cos (PO-I- PO)

(56)

(57)

Therefore,

and

and

[

1“=— ro .
Sin PO $in(wo-llo) + ‘

Cos j% sm * sin(~+60—*)

1 ( )sin($-po+pJ
1

1+&+ s.(qo+po_#)
COS2/30

1

(
7– 1

) 1

Sin(qo+flo-1#)
Cxo” 1+2 Sm sin(#-po+fktl

.
-, ..—

.. .. .

(58a)- ‘-=
-.

<58b)

J-.

(58c)
.

(58dl

(58e)

If equations (58) are used, the coefficients of equations (50) ~. .
can be expressed as follows: .

.,
m=: ($ti-tr~ (as~+ati)

,

(59)

Because the coefficients a, 6, c, and d are functions only
of # and of the free-stream kIach number fil, they need to be
caIcuIat ed ordy once for different values of :}1 and given in
tabulated form; therefore, the ,calculat ion of any flow field
for which the basic flow can be considered a conical flow can
be reduced to the adution of a few linear equations with
known coefficients. -..
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In order to try the method, the flow wound an ogive, as
shown in figure 5, has been determined at M= 3.016 by the
method of cha.racterietica and by the method of linearize.d
characteristics. h figure 5 the usual characteristic net is
shown, while in figure 6 the linearized characteristic net and
the basic body are presented. b a first basic body the
cone chosen is the cone tangent to the apex having a cone
angle of 12.5°. The ccme chosen is not the most convenient
because the values of Q* at the end of the ogive are large,
tmd a better approximation would be obtained if a cone of
smaller cone angle would be considered as the basic body. A
cone somewhat difl’erent from the ogive considered has
been cboscn in order to have some information on the
approximation of the method for sensible variations of the
shape of the body from the, basic body.

Dohtream of the characteristic line AB, the velocity
compomm ts VIam?pl would lwcorne large bccausc at the
surface of the body the component p is quite difIerent from
tile component ~ of thu basic flow; therefore, the flow deter-
mination in the region itowna~ream of the line AB has beeu
considmed as a new problem, defined by th~ flow along AB

and from the st.rcamline that represents the body shape. In

y2 -

1-

tlis region a new basic flow has been considered. Aguin, a
conical flow field has been a.ssumcd as the btisic flow. From ,
the values of ~ and T7at B and A, and from the order of
magnitude of p downstream along the body, a conical flow
field that would give a small dishuhmc(~ cymnponcnt in this
region has been selected. The cone chosen for the sccoud
part is a 5° cone at M=3.077. Thr cone is entirely contained
withh) the body considered in the region used in t.hv calcula-
tions as shown in figur~ 6, and the. most convenient region of
the conical flow field is used for t-he calculations.

In order to pass from one basic body shapr to the other,
the components VI and p, along the Awactcrist ic line A13 for
the second basic body must be dctcrmirwd. This opumt.iqn
can be preformed by determining t.fw value of T~’-f- T71’and

m’+ m’ at the points a, b, and n of figure 6 for th first Imsic
body, by interpolating the values at the points a’, b’, and n’
between characteristics 1 and 2 along the characteristic of
the other family, and Lhcu by determining thv ncw vtihu’ of
V,” and pl” for the sccoml basic bod~- Rlong .4B from the
cxprcssioris

17,”=~7_ T;ff

W“ =w—!oo~’

1 # 1 1 1 r Io I
I

2 3 4
I

5 6 7 8
x

9 10

FKIUBI 6.—The shapeof the bcdj andyti and the net usedfcwthe chnacterlat!m method for .M-3.Olft,

‘f

FIIWIRE6,—The chetaoterlstfcnet for IJnearkeclcbarsctgrfatlcmlculstimm. Fke.tbwlc body, 125° ooneat M-&O16; wcnnd bade body, 5“ _ tlt M-3.0?7.

!,
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and

where l“.” arid q“ me the values of 1’ and p for the second
basic body at the position considerd and l“.’ and ~0’, the
values for the first basic body.

The calculations by linearized characteristics required the
solution of 11 linear equations of the type of equation (47),
[48), or (49) with one unknown and the interpolar ion of four
points, which can be done in a very short time (of the order
of 1 hour) when the net is drawn and the coefficients of the
equations are determined. The pressure distribution ob-
tained is presented in figure 7 and is compared with the pres-
sure distribution obtained from the exact method.

For the hack part of the body where the flow dtiera slightly
from parallel flow, a cylindrical body with uniform flow at
diff~rent Mach numbers can be considered as the basic body.
In each region of the flow the lIach number for the basic
flow is constant; however, the component u can be approti-
mat ed conveniently by changing the biwic-flow Mach
number.

When t-he body has a tail, a conical solution as proposed in
reference CIfor flow bide a tube can be assumed as the basic
body. In this case, each streamhne of the conical solution
can be considered as the shape of the basic body (fig. 8), and
the flow field can be obtained from conical-flow caIculat ions
whkh can be determined easily in the hodograph pIane. By
chmging the strength of the ha] shock of the conical solu-

Y

x

FIIIU~ 7.-Corn_ between resultsof the eahmlatlonby tbe cbarocteristks method
and by the llnemimd clmraete?istimmethd obtslned at -M-.%OI6.

\ \,\\/”
‘{

.. “, ‘\&i&g2j#~~“’~ /’\
~.. I

\ #
-..

“’+ssi$\p// -._....,,,.....
FJG~Z 8.-Coniul fiw for tedIof rmfailysymmetric body. Initial M.&Z

tion, cMerent ratios between maximum cross-sectional area
and tail area can be obtained. “Any part of the streandinc
can be assnmed as the basic body shape.

The present method does not require the existence of a _
linearized solution and, therefore, can be applied also at ___
high Jlach numbem. This method permits obtaining the
shape of the shock wave and taking into account entropy
variations Eigh precision can be obtained by using several
basic flow, fleIds for the diHerent regions of the body con- . .
sidered. Because of the simplicity of the calculations, the
systematic. calculations and tabulation of coefficients of
equations (58) for different cones and different 31ach num- -”’
hers would be of great practical interest.

Tabulated dues can be obtained also in the folIo&g ‘“
way: For each cone OC of cone angle ~%considered, a super- ‘ “”
posed flow must be calculated as shown, for example, in
figure 9(a). The values of VI and %,.for this sufierposed ‘-
%OWare obtained at given points of the characteristic net.
Because of the linearization of equations, if the superposed
flow chqnges in ,hrtasity, the values of V, and w at every .
point change proportionately. Because of the conicaI prop-- .=.
erty, if the point A (fig. 9 (b)) moves along OC, the flow
field changes in scale; therefore, the effect on a point E due” “
to the superposed flow field A~l starting at A is equal to the
effect of a linearized flow field starting at A’ and of intensity
An at a corresponding point E’ de-tied by —

. .

z~ * zd. ~————
Xxqy n-””””” - .——.

Therefore, when the flow fieId for the d~turbance AB is
determined, the effect of any disturbance of the type of the
disturbance AB in the entire flow field can be obtained.
Then any body shape can be considered as a superposition ““
of flow fieIds of the type of flow corresponding to the d~ –
turbance Aq placed aIong the basic cone. From the simple
crdculation of the flow for the shape AB, the velocity can be

P
%1[

B

% I
A h’

(0)
x — _.:

Y

/’

/

(b)

o ‘A +%s Xp x
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[let rrfninwf by means of the equation

v= v:+ $7n

where n is the number of the superposed flows that affect
the point considered.

Consider, for example, figure 10. Several linetirized flow
disturbances must be superposed on t,ho basic conical flow
field, First, a superposed conical flow at O that can be
obtained from conical-flow calculations must be considered.
At, & a superposed disturbance must. be acklcd in order to
satisfy the boundary conditions at A. If the ca.lcuhttions
Ilti.ve been performed for the disturbance at ~ and for
API= 1, the velocity at A can be obtained from

VA= (VO}A+(V,)A+ (V,}A

wlmre (Vo)~ is the velocity of the basic flow at A, (1’1)~ is
the velocity disturbance at A due to the conical flow super-
posed at O, and (Vz)~ is proportional to

PSA=fPA-[(4%)A+ (%)Al

i~nd can k obtuinefi from

M=(V2)A
(178)b (Awl)=

Wke b is detcrm ke~ lJ~

‘An_~A_yA ,,.. ., -------

z% Xb va

In a similar way V, is determined at the points B, C, and
so forth. At B anot[~er linearized flow field having velocity
components V8 and ~ must IJOconsidered where

(WS)B=@?-[(dB+ (%)B+ (K4zJ
mid

(~7&/=(~7,)f&

where b is defined hy

2“

l.huiu10.—AppHcatkmof the linearized sharsctorhtkamsthod having mustaut
dfsturbmm superposedons ccmlwdtalc flow.

Because of the rapidity of calculation, iho variation of uny
geometrical parameter can be invcst,igahxl in practimd appli-
cations without the nccw.ity of a large amount of rmnwricxd
work.

COMCALFLOWHELDWITHOUTAXIALSYMMETMY

The calculation of slemler bodies withouL axial symmetry
requires the determination of conical flow without axial
symmetry, which can be done by means of Lbe linearized
characteristic method, The basic prolhm of the de-
termination of conical flow consists in determining t.bo shape
of the conical shock wave produced by the body. When the
shape of the shock is determined, the flow field nround the
body can be ohtainod by means of numerical calculations
(see, for example, reference 4). llccausc the relation bc-
~wcen the shape of the body and tlw shape of the shock wtivc
is not known FIpriori, the method of linearized cl]articteriatics
can be particularly usefuf for flow determiriat ion of this kind.
An approximate shape of the shock wave is assumed M the
basic sdut.ion and the flow field inside the shock is de-
termined; t.hon a linearized flow field is superposed in order LO
sat isfy the boundary condif ions aL the body. TIN calcula-
tions are simple if the basic flow can IN dch-muinc(f analyt-
ically or numerically without a large amount of calculation.
For example, for slender bodies the basic flow can be the
axialIy symmetric flow for which values arc available in
tabulated form. Consider a mnical shock wave which can
be defined in polm coordinates as

#8= (#o). +$(#ml, cos ~+$ (v?J, sin m~ (GO)

where all the values of ~. and +~ are small so that terms of
t.hc order of +.Z can be neglected. Such a shock wave is
approximately of circular cross section, as is found for slender
conical bodies. If t-he flow is assumed to havo a symlnetry
plane, the second summation of equation (60) is equal to zmo.

The velocity components in the radial direction (o,) 1, in
the tangential direction (or) ~, and in thti direction normal to
the shock (vM)lin front of the shock wave are (WCfig. 11)

(0;),= v, Cos $,

(ON),= – VIsin *, cos a

I

(61)
.

(0,),= – V, sin $, sin cs

where all tbc velocity component arc rcfcrrcd t.o tbc limiting
velocity and a is the angle of the dillcdral bctweeu tl~c plane
normal to the shock wave and t.lle plane containitlg tlIe ref-
erence axis. Across the shock wave the following rela t ions

— 1 “(1– V? cosz +,— V12sins #, sin_a)
(UN),=-%

VI sin $, cos a

(62) ‘
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If the wlocity components behind the shock r., p., and w of
the flow field in polar coordinates are considered at each
point #,=#O,+~*X, cos no (fig. 11),

(u9##=–v,sin+,sin aCos a+

Therefore, the velocity components behind the conical shock
wa~-e of equation (60), if terms of the order of #.* are neg-
Iected, are

(C,)*,=1“1cm (4’0),—VI sin ($0), ~ (*J, Cos no

(64)

Tlwn, the velocity components behind the shock defined by
wluation (60) can be exqms.sed as:

where qo,u%,(zI,)~, (~~., and w- are independent of @,v,, and
L*Mcorrespond to the flow field for circular conical shock

*;, Wi (;J.,(PJ., and (w). at the circular cone ~= $0’ are
independent of n and are defied by

(66)
and

..JL

It can be shown that the flow field defined as in equations
(65) satisfies the boundary at a surface of a conical body”

.—

defined by

$E=$~+X$% COSn6 (67)

if thtiterms $% are smalI and quantities of the order of

~%’ or higher are neghgible with respect to terms of the order_ _.

of #.. M the surface of the body the velocity must bi --
tangent to the surface of the body; therefore, at each point ~
of the body

()

t’= d$c “E–n$nc & ~g

GA ‘sin *Cde— sin @c .-—

and, therefore, the boundary conditions can be expressed in
the approsirnation considered as

()(U”)$C=(%J ,.,+ * *O z (A)c cm no+
c .—

ZI [O’wocm Cos ~~

–(mh.(u)$ocnshno) (n.> sin no)
. --:~- —

sin $C
. . .

where the subscript- +% indicates quantities M the surface

of the basic circular body and $C indicate quantities at the
surface of the conicaI body considered where the parameters
($.), are given by equation (60} and define the shape of the
shock. Because each term of the right+ide summation is
of the order of (4~2, the boundary conditions me

(’”0)$0==0
Z)rno

(A)SKh)Aoc=-“()}~,oy’
(6S}

Equations (6s) show that the basic flow defined by the
components r,. and r% is the flow corresponding to a circular “

cone of angle #k*and permits reIation of the equation of the

conicaI shock to the equation of the conical body. The
coefficients (o,),, (o& and (w). for diHerent values of n
can he determined for agiren free-stream 31ach number and
value of (#& or (40),; therefore, from equations (60),
(65), (67), and (68), the flow field around any conical body
of the type given by equation (67) can be obtained when the
terms (j~c are small.

The determination of the quantities {o,)X, (u~m, and (W~m
as functions of 4 can be obtained from the following equation

Vj
.

FIGLIZX11.-C!cmkrJc90rdin9t0S@eM. .
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(69)

Equation (69), because of expressions (65), gives

[ ‘1(’-%)
(i}.+ ~*

Because of the approximation considered, the entropy
remains constant in each meridian plane outside of a vorticose
layer of infinitesimal thickness around the body (see reference
3). Indeed,

(71)
and

as as
“‘n *G=–-wm

(72)

From equation (71) there” results ~ of the order of

(h),; ~eref*w w~ereUnxoj ~i is *f t~le *rder *f +$ and

can be neglected. Then

or, in the approximation considered,

(74)

Then or+ b% is the radius of the hodograph diagram in

t,hc plane ~= G%mstant (see reference 4) and (vJ ~ and
(v,). can be obtained from a step-by-step calculation from

$= #OSto $=$% bY mca~ of the cquatiol~

where R. aL station ~ ia obtainccl from equation (70) and

(76)

can be calculated from the values of (v,)6, (on),, rind (w) m
at $.

The value of [(w) .]$-~~ can bo obtained from

()[(w).]$-.t= [(w).]$– ~ ~A# (77)

&v.

()
and —

Z)$ *
can be obtuincd from equation (71) where

S= So+S’l~#nC*Snd (78)” .

and S1 is independent of # and can ho dctcrmincd from
the equations of the shock from the cxprwsion

I

where +s is t-he inclination of the shock. Then

–-$ s,=omO sin* *+v,O(V,)=+vmo(~ n)a+

w~e, if the quantity
sidered potential flow,

V,ow.sin @+v=ow, Ws$ (7’3)

S, is ncgkctcd and the flow is con-

–_.& - -- (~())
‘n— sin+

The method presented has been applied to the determina-
tion, for the condition of zero angle of attack, of t.lm flow
field around a cone having qn elliptical cross section with
axes in tho ratio of about 1 ta 3, for which experhmmhd
data were available at .34=1 .8, and for a cone of elliptical
cross section of ratio I to 1..88. The calculations have
been performed in the following way: The bodies arc
shown iD figures 12 (a) and 12 (b). The vah~c of # al
0=0° is equal to 6.3°, whiIe the value of # at 0=90° is
equal Lo 18.4%

The angle # can be cxprcsscd as

but

therefore, by determining the value of # at SLYpoints, dw
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following Yaks have been obtained: lf #%=lOo,

$~=–5.07*

$%=1.94”

&=-0.84°

$+=0.43”

&=-0.16°

‘llerefore, a 10° cone at zero angle of attack is assumed as
the basic body. Reference 5 gives tabulated values for a
10° cone at Ml= 1.816 and the calculations have been per-
formed at this Mach number. The table gives

#o~=34.45”

The entropy \-ariations SI are smaII
Then,

-===3

and are neglected.

——–--4
(b)

(s) ~~DtiCd crmewith ads mtlo Ofl t“ 8.

90°

1)0°

-90°

90°

+

0°

-w

(b)EIU~tkal cam wtth axismtf” “f 1 to MS.

FIO- 12.-Tha elllpth?d mmmam@ed.

l?he vaIues of (o,]=, (uJ., and (w), between #% and $% ha~-e

been determined by means Qfequations (70), (75), and (80).
Then $,8, #~~, and t~~ have been determined from equations ___

(68) where

?)O,O(–)a+ ~c
= –2(GJ *OC =–2x0.6000

The values of +. obtained are

&= –0.24”

#,&=5 .1”xlo-3

@3~=–1.7*xlo+

+*=7.4 ”X104

#%=.- 3”~lo-7

.Asis shown from the analysis of the values of 41 and tc, the
hock is very close to a circular shock wave even for large
departure of the body from the circuhir cross section, and
the effeck of the terms corresponding to T~=6, 8, and 10 is
wry sm.d. The velocity components at the surface of the
body are obtained from equations (65) at #=$0 and the pres-
sure distribution presented in figure 13 is obtained. In the
same figure, the pressure distributions obtained by using the
ume calculated -dues of (r,) ~, (oJ,, and (w)= for LU=I.81
mound an elliptical cone with a cross section having axes in
the ratio of I to 1.88 are ah shown. The conical body
having an ellipse of axis ratio 1 to 3 has the same cross-
Sectional area as a cirmdar cone of #0= 11°. Its pressure

..—

drag obtained from this cakm.lation is C~=O.099 in compari-
mn with 0.12 for the circuIar cone. The conical body havhg
as cross section an ellipse with axes in the ratio of 1 to 1.S3
lms a drag coficieut of 0.103, while the equivalent circular
cone of #0= 10°30’ has CD= 0.115. Therefore, those C~CU-
1.ation9 indicate that conicat bodies of circular cross section
have larger drag than cones of elIiptical cross section.

.04 I ,— CaMated values
~ Exferimemtat values

v
-@

o 30 60 90
Polar angle, degrees

FMUBE I&-Presmm distribution acoml.i the conicalMdks at M-1a
.
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The resuIts obtained ugrec well with the experirncntul re-
sults, also, if the hotly shape chosen requires Iarge valuts for
the angle (#,)c. lVith the same flow fields (w)~, (on)n, and
(w)m,any ot.lwr conical shape having two planes of symmetry
reprcscntwl by equation (81) when to is 10° can be obtained
at Jf= 1.816. It the flow lMS only one pIane. of symmetry,
only the terms in cos t?, cos 30, and so forth, must bo con-
sidered; whereas, if no s~-mmetry exists, terms in sin no and
cos ti must be considered.

The flow fiekls defined by (o,)., (~~)~, and (w)= can be ob-
t.aiued WI(1given in tabulated form without a hwge amounb of
numerical work as for circular cones, and, therefore, the de-
twminabion of conical bodiw can be performed without
difficulty in a very shoit time.

iVhcn the shock shape- is somewhat .diierenL from .a cone
having circular cross section, the basic flow field must be
different from the a~iallj- symmetric. IIowcvm, if the basic
conica~-flow components me csprcssed in the form

U,=0,=+U,J(8)

P,=0,=+0,J(8)

w=u#(f?)

the basic flow can still be obtained by solving numerically
the equations of motion in two meridian planes, and, there-
fore, the basic flow can bc determined exactly. For conical
flow the linearized method can, then, have wide application
to any form of lxmnclary conditions.

FLOWFIELDSAROUND SLENDER BODIES WITHOUT SYMMETRY

TVhen the conical flow is detmnined, the method of charac-
kwistice can be applied to the determination of shmder
bodies. Tho equations used arc similar to the equations for
circular bodies at angles of attack and can be directly de-
rived from tlmsc equations (ref crence 2).

FWV values of n are required for the dek~minatiou of the
flow fiekl, and onc set of calcuIaticms can be used for several
bodies having the same basic body; therefore, tho method can
be of inLcrcst for practical applications.

QUAS1-’TWO-DIMEIW1ONALFLOWFIELt)S

In many geuwwl three-dimensional flow fields of practical
intmest the flow is not Loo difTerent from a two-dimensional
flow, and, therefore, the velocity field and entropy field can bc
expressed as in equations (I) nnd (2) with good practical
mpproximfition. Flow fiekls of this kind arc found, for ex-
ample, in wings havi~m plan forms which can bc considered
(40w to the t.wo-dinlcnsionaI type with some twis Lor a varia.-
t.ion of thickness distribution along the. span. Flow fidds of
this kind can be considered also in some problems in which
interference betwccu a wing and a two-dimensional taiI
(clownwash effects) or between a two-dimensional wing and a
hly is considered. In all these probhms of practical in-
tmwsL for tie airplane design, the component w in the direc-
tion of tlht~span of the wing can be considered small; therefore,
cquatims (1) can h used and the components ul and 01 d@-
pemding on the three-dimensiorml effect cm-iaIso be considered
small.

Equation (17) expressed along the chtmwt.cristic lint! of LIW
first famiIy Al= tan @O+%) in the plane z= ConeLant. is

1 dVl dti SiI1’130d~,
–—+PIB,+;C1— —tan f?o#-<-R dz

VO dx

while alcmg the second characteristic
following equation is valid:

(83)

where Bl, I&, G, and Cl are defined by equation.. (20).
Along each streamline sO,

dwl b VI h S1 ao=

ZTii’x+x m“
(84}

Equations (82), (83), and (84) permit the detcrminatiwl of
the flow field by relatively simple procedures.

Consider, for exampIe, a wing hmving twist, wwiahlc profdv
distribution, and variable chord, as shown in figtnw 14. Thr
wing can be analyzed by meuns of the 1inearized cha ractc r-
is tics method in the following why: FirsL, the root am{ tip
profiles are cohsidcrcd. Section a and wwtion h huvc d~vr-
cnt reIative thicknesses and chords.

o -x

c -—————————

*

T .—. ——
b
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I
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(c)
z

(a) Wfng plan form.
(b) Wing m aectkmat u @no 4= Consteat.
(c) Shock-wavecalcalatlon at the leadlng edge.

FKWIEE14.–Det@rmInatkm of tbe ffuwaromrd a thrco.dlmcnalmul sup#acmlo wlM
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If the variation from a to b is linear, the properties of a.
tu_o-dimensional cross section at any station c can be obtained
I)y means of linear interpolation between the corresponding
values at a and b.

The profiks a and b are analyzed by means of two-
{limensionaI-flow theory and the characteristic net, and the
wdues of the coefficients 111~I&, Cl, and C’Zare determined
from two-dinlenaionaI considerations. If entropy eflects are
nrgIected or incorporated in the linearized flow, the cocffi-
4’itwts B,, B~, Cl, nnd C: can he determined as for the case
{If t\vo-&melMioMI potentiaI flow at ench point of the axis
icquations (29), (3o), and (34)) and are constant aIong char-
actt~ristic Iines of the first famiIy. Then the Linearized flow
is defined as the flow that. considers the three-dimem~ional
f~ffects and the entropy distribution. Therefore,

where MOand r~ are the poteutial-flow solutions in the pIane
c-= C’onstant and satisfy the bounda~ conditions in the
phme z= Constant, al and q are the components due to the
presence of w, (and of the variation of entropy), and a. can
lw a coefficient, for example, proportiomd to the twist dis-
tribution or to the thickness variation. Because Ug and G
tire functions .of z, y, and 2, vdde for the basic flow they have

au~
twen determined from twodirnensional .com~iderations, ~

lvhere ~ “IS the variation of the velocity component for the
--

htisic flow-.
\’ilen WIis considered small, in all the flow fiekl the terms

2U?P au and 2L?W?M’—. — .—
IQ aZ % a:

can stiII be neglected in the &fferent.iaI

uquations along the characteristic lines, and, therefore, equa-
t ions (82) and (83) are stll. valid.

.it each plane z= Constant, the charqcterist ic net is know-n;
t lwrefore, the intersections of the shock wave for the total
Ilow with a plane y= Constant can be determined from char-
acteristic calculations. If O is a pornt at the Ieading edge
of the wing (fig. 14 (bj~, the’shock wave at. O can be obtained
from shock-wave conaiderat iom and from the boundary con-
{[itions because 6 at O is known, and. at O the shock is two-
{limensionai. Therefore, the velocity components w and rl

Mt O ale zero, whiIe b~~ is given by equation (86). II the ‘

plane z=x~ is assumed” to be close to the plane Z=XO, the
characteristic Iines B.$ and C-i can be drawn in any meridian
plane considered for the basic flow.

.kt the point. O, VI is zero and, in the neighborhood of O
aIong the shock L, the velocitj can be expressed as

(y,).=g@ (s7)

Iiovi,aIong the shock wave the direction of the veIocity &
hind the shock is related to the intensity from the equations ~-

‘qol
of the shock wave; therefhre, the direction ql = ~Z aIong

-—
av[

the shock and the shape of the shock as a function of ~

are determined w-hen ~ along the shock is know-n. ‘ -.

If the velocity V, at a point .! of the body is
.

.
(V,).=*A9 (88)

then the velocity at C and B can be determined as Q funct”on .—

b‘[ from equations (82) and (83), because the vaIue of w,of —
&

at. A is given from equation 86 and is known, and the value

of ~ can be obtained from the value of WI at .+ in severtd,

planes z= Constant.
If in equations (82) and (83) the Yahxes of Vl, &, and PI

at B and C are espressed by means of equation (87) and of the
equations of the shock waves which give the mefficients of !
the expressions

then equations (82) mud (83) give two rehitiona between
avl ~d avl aV,~d y~
a8 T and, therefore, —

as
— can be determined.

The equation of the shock wave can relate u as a function
of r, or VI as a function of q without the nece&ty of the
component w, because the component w is proportional to the
inclination q of the tangent to the shock vrith tlm plane
x= Constant, and VI and ~ are functions of Ill cos q, hut

()Ilf, Cos ?f=ilf 1–$ =.lfl in the approximation considered

here (6g. 14 (~)). The components u and r at B and the
position of B having been determined, in each meridian
plane z= Constant, the intersection of the shock in
the plane y= Constant is obtained and w at B is determined.
Then a point D is interpolated in each meridian plane and
the point E is obtained. Then point F is determined. In
order to obtain (w)F, the stremdiie DF’ for the basic flow

b~’o()must be dram-n and —a~ ~interpolated between F’ and E.

In a similar -way, all the flow field can be obtained. The line
TT’ defining the plan form in figure 14 (k) must be outside of
the kkh conoid from T. Because few po-mts along each “-”
profile are required, the largest amount of work for such a
calculation is represented by the construct-ion of a b~~ic

-.
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charactwistic net which permits obtaining points which
simplify the determination of ‘w. By changing the value of
the eoelEcient a, different thickness distributions or different
twists ean be eoneidercd. The nww distributions must be
obtainod by changing proportionate y the variation of thick-
ness or twist with respect to the basic wing and by varying in
proportion tlm value of a.

CONCLUDING REMARKS

The method of characteristics for supersonic flow has been
simplified by assuming that ono of the veIocity components
or the effect on the velocity components due to variation

.of ona physical parmater is small, so that the square of the
velocity components considered small can be neglected.
By means of this simplification, the flow fieId can be repre-
sented rLsthe superposition on a basic flow field (which is not
Iinear and must be determined by the method of character-
ist,ica) of linearized flow fieIds which are defined by a differ-
ential equation with variable, but known, coefficients.

The calculations of them linearized flow fields can be pc.r-
formed a~ong the characteristic net of the basic floiv field.
The method has been applied (a) to the tvio-dimensional flow
with entropy gradient, which has been transformed to a basic
potential flow on which a linearized flow due to the entropy
gradient is superposed, (b) to a.xialIy symmetric problems
where conical or cylindrical flows are considered as the
basic flow, (c) to the determination of the flow fteId around
cones or eIende.r bodies without axial symmetry, and (d) to
particular tlmw-dhnensional flows which can be simulated
aa a basic two-dimensional flow on which threedimensional
linearized flows are superposed. Application (b) permits
obtaining in a simpIe way the flow field around bodies of
revolution without using linearized theory and indicates the

possibility of using tabulated values for such determinations.
Application (c) permits the determination of flow fields
not yet determined by the method of chtiracterisLics. Any
such conical flows can be determined by using tahdatcd
values that can be obtained as for cones of circular cross
section at small angles of attack. The application in (d)
can bo of interes~ for wings of approximately two-dimensional
form having twist or thiclmess variation along the span and
for interference probhns.

l,ANGLEY AERONAUTICAL LABORATORY,

NAmONALADVISORYCOMMITTEEFORAERONAUTICS,
LANGLEY FIELD,VA,,July2$,1$61.
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